- 1 вариант
- 1. Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 35 %, 25 % и 40 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40 % красной, 30 % зелёной и 30 % синей красок? Синюю краску добавлять нельзя.
- 2. В таблице 6 × 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли.
- 3. Два равносторонних треугольника с параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3√3. Найдите разность периметров этих треугольников.
- 4. Числа 3, 6, 11, 16, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия:
- Какие числа в какой группе?
- 5. Дан треугольник ABC с прямым углом C. Окружность с центром в A, проходящая через C, пересекает гипотенузу в точке E, а окружность с центром в B, проходящая через C, пересекает гипотенузу в точке D. Найдите ED, если AD=15, BE=30.
- 6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 18.
- Чему может быть равна сумма чисел в отмеченных клетках?
- 7. Натуральные числа а, в таковы, что число 9a+10b/a+2b тоже натуральное.Чему может быть a+2b a равно отношение a\b? Укажите все подходящие варианты. Каждый ответ записывайте b в отдельное поле, добавляя их при необходимости.
- 8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 80 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, И когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
- 2 вариант
- 1. Есть 70 литров смеси, в которой доли красной, зелёной и синей красок равняются 20%, 35% и 45 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 25% красной, 40% зелёной и 35% синей красок? Синюю краску добавлять нельзя.
- 2. В таблице 6 х 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
- 3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.
- 4. Числа 2, 6, 11, 15, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
- 5. Дан треугольник АВС с прямым углом С.Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 12, BE = 54.
- 6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 17. Чему может быть равна сумма чисел в отмеченных клетках?
- 7. Натуральные числа а, в таковы, что число 9a+10b/a+2b тоже натуральное.Чему может быть a+2b a равно отношение a\b? Укажите все подходящие варианты. Каждый ответ записывайте b в отдельное поле, добавляя их при необходимости.
- 8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 112 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть И тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
- 3 вариант
- 1. Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 25%, 20% и 55 % соответственно.Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 30% красной, 25% зелёной и 45% синей красок? Синюю краску добавлять нельзя.
- 2. В таблице 6 х 6 отметили несколько клеток.После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
- 3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.
- 4. Числа 3, 8, 11, 17, 22 и 31 разбили на три группы по два числа так, что выполняются следующие условия:в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
- 5. Дан треугольник АВС с прямым углом С.Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 16, BE = 50.
- 6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 8. Чему может быть равна сумма чисел в отмеченных клетках?
- 7. Натуральные числа
- 8. На квалификационное соревнование, по результатам которого отбираются участники областной чемпионат, подали заявки 96 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. И Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
- 4 вариант
- 1. Есть 30 литров смеси, в которой доли красной, зелёной и синей красок равняются 35%, 40% и 25% соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40% красной, 45% зелёной и 15% синей красок? Синюю краску добавлять нельзя.
- 2. В таблице 6 х 6 отметили несколько клеток.После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
- 3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.
- 4. Числа 3, 8, 11, 17, 22 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
- 5. Дан треугольник АВС с прямым углом С.Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 14, BE = 112.
- 6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 9. Чему может быть равна сумма чисел в отмеченных клетках?
- 8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 128 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть и тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат?
1 вариант
1. Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 35 %, 25 % и 40 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40 % красной, 30 % зелёной и 30 % синей красок? Синюю краску добавлять нельзя.
Ответ: 16.5 красной, 13.5 зелёной
2. В таблице 6 × 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли.
Найдите количество отмеченных клеток.

Ответ: 4, 2, 0, 0, 2, 1
3. Два равносторонних треугольника с параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3√3. Найдите разность периметров этих треугольников.

Ответ: 36
4. Числа 3, 6, 11, 16, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия:
в первой группе оказались только простые числа,
во второй группе сумма чисел делится на 3,
сумма чисел в третьей группе больше половины от общей суммы.
Какие числа в какой группе?

Ответ: 1 группа (11, 23) 2 группа (3, 6) 3 группа (16, 31)
5. Дан треугольник ABC с прямым углом C. Окружность с центром в A, проходящая через C, пересекает гипотенузу в точке E, а окружность с центром в B, проходящая через C, пересекает гипотенузу в точке D. Найдите ED, если AD=15, BE=30.
Ответ: 11, 46
6. В квадрате 5×5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 18.

Чему может быть равна сумма чисел в отмеченных клетках?
Ответ: 119
7. Натуральные числа а, в таковы, что число 9a+10b/a+2b тоже натуральное. Чему может быть a+2b a равно отношение a\b? Укажите все подходящие варианты. Каждый ответ записывайте b в отдельное поле, добавляя их при необходимости.
8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 80 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, И когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
Ответ:
На областной чемпионат попадут 20 команд
Будет сыграно 79 матчей.
2 вариант
1. Есть 70 литров смеси, в которой доли красной, зелёной и синей красок равняются 20%, 35% и 45 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 25% красной, 40% зелёной и 35% синей красок? Синюю краску добавлять нельзя.
Ответ: 8,5 литров красной краски и 11,5 литров зелёной краски
2. В таблице 6 х 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
Ответ: 4, 2, 0, 0, 2, 1
3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.

Ответ: 36
4. Числа 2, 6, 11, 15, 23 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
1-я группа: 2, 11
2-я группа: 6, 15
3-я группа: 23, 31
5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 12, BE = 54.
Ответ: 42
6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 17. Чему может быть равна сумма чисел в отмеченных клетках?
7. Натуральные числа а, в таковы, что число 9a+10b/a+2b тоже натуральное. Чему может быть a+2b a равно отношение a\b? Укажите все подходящие варианты. Каждый ответ записывайте b в отдельное поле, добавляя их при необходимости.
8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 112 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть И тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
3 вариант
1. Есть 90 литров смеси, в которой доли красной, зелёной и синей красок равняются 25%, 20% и 55 % соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 30% красной, 25% зелёной и 45% синей красок? Синюю краску добавлять нельзя.
Ответ: 9,73 литра красной и 8,82 литра зелёной
2. В таблице 6 х 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
Ответ: 4, 2, 0, 0, 2, 1
3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.
Ответ: 36
4. Числа 3, 8, 11, 17, 22 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 16, BE = 50.
6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 8. Чему может быть равна сумма чисел в отмеченных клетках?
7. Натуральные числа

8. На квалификационное соревнование, по результатам которого отбираются участники областной чемпионат, подали заявки 96 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. И Сколько команд попадёт на областной чемпионат? Сколько будет сыграно матчей?
Ответ:
Прошли в областной чемпионат: 24 команды
Сыграно матчей: 95
4 вариант
1. Есть 30 литров смеси, в которой доли красной, зелёной и синей красок равняются 35%, 40% и 25% соответственно. Сколько литров красной и зелёной краски нужно добавить, чтобы получилась смесь с 40% красной, 45% зелёной и 15% синей красок? Синюю краску добавлять нельзя.
Ответ: 9,5 литров красной и 10,5 литров зелёной
2. В таблице 6 х 6 отметили несколько клеток. После этого слева от каждой строки написали, сколько клеток от левой границы до первой отмеченной клетки в этой строке свободны. Аналогичные числа записали сверху, справа и снизу. После этого числа сверху, а также отметки в клетках стёрли. Найдите количество отмеченных клеток. Восстановите числа, которые были записаны сверху.
Ответ: 4, 2, 0, 0, 2, 1
3. Два равносторонних треугольника C параллельными сторонами расположены так, как показано на рисунке. Оказалось, что расстояния между параллельными сторонами треугольников равны 3 корень из 3. Найдите разность периметров этих треугольников.
Ответ: 36
4. Числа 3, 8, 11, 17, 22 и 31 разбили на три группы по два числа так, что выполняются следующие условия: в первой группе оказались только простые числа, во второй группе сумма чисел делится на 3, сумма чисел в третьей группе больше половины от общей суммы. Какие числа в какой группе?
Ответ:
1-я группа: 3, 11
2-я группа: 8, 22
3-я группа: 17, 31
5. Дан треугольник АВС с прямым углом С. Окружность с центром в А, проходящая через С, пересекает гипотенузу в точке Е, а окружность с центром в В, проходящая через С, пересекает гипотенузу в точке Д. Найдите ED, если AD = 14, BE = 112.
Ответ: 98
6. В квадрате 5 х 5 расставили натуральные числа от 1 до 25, каждое по одному разу, так, что суммы чисел в каждой строке, каждом столбце и каждой из двух диагоналей совпали. Оказалось, что в центре стоит число 9. Чему может быть равна сумма чисел в отмеченных клетках?
8. На квалификационное соревнование, по результатам которого отбираются участники на областной чемпионат, подали заявки 128 команд. Отбор происходит по следующей схеме. У каждой команды есть некоторый счёт побед и поражений (изначально 0-0). В каждом матче принимают участие две команды с одинаковым текущим счётом, и одна из них побеждает, а другая проигрывает (ничьих не бывает). Если команда набирает 3 поражения, она выбывает из отбора. Если команда набирает 3 победы, она выходит в основную часть и тоже прекращает участие в квалификационном соревновании. Турнир оканчивается, когда судьба каждой команды будет определена. Сколько команд попадёт на областной чемпионат?
Ответ: 32 команды.
