Содержание
- 1. Однажды в солнечный день Аля пошла гулять на стадион, а Валя — в парк.Аля двигалась в два раза быстрее подруги и прошла в пять раз большее расстояние, чем Валя. Прогулка Али заняла на 45 минут больше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.
- 2. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано ненулевое чётное количество точек.
- 3. В треугольнике ABC угол B равен 152∘, а высота, опущенная из вершины A, в два раза меньше биссектрисы угла A. Найдите угол C. Ответ выразите в градусах.
- 3.2. В треугольнике АВС угол В равен 146°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
- 3.3. В треугольнике АВС угол В равен 134°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
- 3.4. В треугольнике АВС угол В равен 142°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
- 4. Таблицу 5 × 5 разбили на 7 частей по линиям сетки так, чтобы клетки внутри одного фрагмента граничили только по горизонтали или по вертикали.В каждой части в одной из клеток написали количество клеток в этом фрагменте. Отметьте на изображении все клетки фрагмента, содержащего выделенную зелёным клетку.
- 5. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что: Дусю никто не видит; Беня не видит Гешу, но видит Веню; Геша видит Беню, но не видит Алю; Веня не видит никого; Аля стоит раньше Вени, но не видит его. Определите порядок, в котором стоят дети.
- 5.2. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что: Алю никто не видит; Геша не видит Дусю, но видит Беню; Дуся видит Гешу, но не видит Веню; Беня не видит никого; Веня стоит раньше Бени, но не видит его. Определите порядок, в котором стоят дети.
- 6. Вася задумал три вещественных числа а, b, с. Оказалось, что три прямые, заданные уравнениями у = ах + 5, y = bx + 7 и у сx + 9, пересекаются в одной точке. Найдите значение в, если известно, что а + c = 39.
- 6.2. Вася задумал три вещественных числа а, b, с. Оказалось, что три прямые, заданные уравнениями у — а + 3, y= x + 7 и у = с + 11, пересекаются в одной точке. Найдите значение в, если известно, что а + c = 51.
- 7. Дан прямоугольный треугольник ABC с прямым углом A. На плоскости нашлась точка X, для которой AB=BX и AX=XC. Чему может быть равен угол BAX, если угол BXCBXC равен 138∘?
- 8. В турнире онлайн-игры участвуют 256 персонажей. В каждом из 8 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше. Изначально уровни персонажей были равны 1, 2, …, 256. В битве всегда побеждает персонаж с бо́льшим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним. Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?
1. Однажды в солнечный день Аля пошла гулять на стадион, а Валя — в парк. Аля двигалась в два раза быстрее подруги и прошла в пять раз большее расстояние, чем Валя. Прогулка Али заняла на 45 минут больше, чем прогулка Вали. Сколько времени гуляла Аля? Ответ выразите в минутах.
Ответ: 75 минут
2. На рисунке выберите несколько из отмеченных точек так, чтобы на каждой из шести прямых было выбрано ненулевое чётное количество точек.

Ответ:
3. В треугольнике ABC угол B равен 152∘, а высота, опущенная из вершины A, в два раза меньше биссектрисы угла A. Найдите угол C. Ответ выразите в градусах.
Ответ: 28 градусов
3.2. В треугольнике АВС угол В равен 146°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
Ответ: 34 градуса
3.3. В треугольнике АВС угол В равен 134°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
Ответ: 46 градусов
3.4. В треугольнике АВС угол В равен 142°, а высота, опущенная из вершины А, в два раза меньше биссектрисы угла А. Найдите угол С. Ответ выразите в градусах.
Ответ: 38 градусов
4. Таблицу 5 × 5 разбили на 7 частей по линиям сетки так, чтобы клетки внутри одного фрагмента граничили только по горизонтали или по вертикали. В каждой части в одной из клеток написали количество клеток в этом фрагменте. Отметьте на изображении все клетки фрагмента, содержащего выделенную зелёным клетку.

Ответ: клетки (1, 2), (2, 2), (3, 2) и (2, 3)
5. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что: Дусю никто не видит; Беня не видит Гешу, но видит Веню; Геша видит Беню, но не видит Алю; Веня не видит никого; Аля стоит раньше Вени, но не видит его. Определите порядок, в котором стоят дети.
Ответ: Геша, Беня, Аля, Дусю, Веня
5.2. На физкультуре Аля, Беня, Веня, Геша и Дуся встали в одну колонну, причём некоторые встали лицом вперёд, а некоторые — лицом назад. Человек видит всех людей перед собой в колонне в направлении его взгляда. Известно, что: Алю никто не видит; Геша не видит Дусю, но видит Беню; Дуся видит Гешу, но не видит Веню; Беня не видит никого; Веня стоит раньше Бени, но не видит его. Определите порядок, в котором стоят дети.
Ответ: Геша, Дуся, Вени, Беня, Аля.
6. Вася задумал три вещественных числа а, b, с. Оказалось, что три прямые, заданные уравнениями у = ах + 5, y = bx + 7 и у сx + 9, пересекаются в одной точке. Найдите значение в, если известно, что а + c = 39.
Ответ: 19.5
6.2. Вася задумал три вещественных числа а, b, с. Оказалось, что три прямые, заданные уравнениями у — а + 3, y= x + 7 и у = с + 11, пересекаются в одной точке. Найдите значение в, если известно, что а + c = 51.
Ответ: 25.5
7. Дан прямоугольный треугольник ABC с прямым углом A. На плоскости нашлась точка X, для которой AB=BX и AX=XC. Чему может быть равен угол BAX, если угол BXCBXC равен 138∘?
Ответ ≈ 74° (?)
8. В турнире онлайн-игры участвуют 256 персонажей. В каждом из 8 раундов персонажи разбиваются на пары, сражаются между собой, победитель проходит дальше. Изначально уровни персонажей были равны 1, 2, …, 256. В битве всегда побеждает персонаж с бо́льшим уровнем, а если уровни одинаковы, может победить любой. После каждого тура уровень персонажа может измениться на 1 в ту или иную сторону, а может остаться прежним. Персонаж с каким наименьшим стартовым уровнем мог победить в турнире?
Ответ 2
